\"\"

\

Let \"\" be the sides of the square ends and \"\" be the length of the package.

\

Total area of the solid \"\".

\

Find \"\" in terms of \"\".

\

Volume of the two hemispheres = Volume of one sphere.

\

Formula for the volume of the sphere \"\".

\

Formula for the volume of the cylinder \"\".

\

Total volume of the solid \"\".

\

\"\".

\

\"\"

\

Solve for \"\".

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

\"\".

\

Differentiate on each side with respect to \"\".

\

\"\".

\

Find the critical numbers by equating derivative to zero.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\" is minimum when \"\".

\

The radius of the cylinder that produces the minimum surface area is \"\".

\

\"\"

\

\"\".