\"\"

\

The function is \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\

Critical points of the function are the points where the first derivative is equals to zero.

\

Consider \"\".

\

\"\".

\

Apply deivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Newton\"\"s approximation method formula : \"\".

\

Substitute \"\" and \"\".

\

\"\".

\

Perform Newton approximation for \"\".

\

The calculations for si iterations are shown in the table.

\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\

Observe the table:

\

The critical point number is at \"\".

\

\"\"

\

Find the relative extrema, by substituting critical point in \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\".

\

The relative extrema is \"\".

\

Graph the functions \"\" and \"\".

\

\"\"

\

Observe the graph:

\

The critical point number is at \"\".

\

The relative extrema is \"\".

\

\"\"

\

Graph:

\

Graph the functions \"\" and \"\".

\

\"\"

\

The critical point number is at \"\".

\

The relative extrema is \"\".