\"\"

The differential equation is \"\\frac{dy}{dx}=2x^{-3}\".

\"{dy}=2x^{-3}{dx}\"

Integrate on both sides.

\"\\int

\"y=2\\int

Power rule of integration: \"\\int.

\"y=2\\frac{x^{-3+1}}{-3+1}+C\"

\"=\\frac{2x^{-2}}{-2}+C\"

\"={-x^{-2}}+C\"

The general solution of differential eqation is \"y=\\frac{-1}{x^2}+C\".

\"\"

Check the result by differentiation.

\"y=\\frac{-1}{x^2}+C\"

Apply derivative on each side with respect to \"x\".

\"\\frac{d}{dx}y=\\frac{d}{dx}\\left

\"\\small

\"=\\frac{d}{dx}\\left

\"=\\frac{d}{dx}\\left

\"={-(-2)x^{-2-1}}\"

\"={2x^{-3}}\"

\"\\frac{dy}{dx}=\\frac{2}{x^3}\".

\"\"

The general solution of differential equation is \"y=\\frac{-1}{x^2}+C\".