\"\"

\

The function \"\" on \"\".

\

Rolles Theorem:

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\"  is continuous on \"\".

\

2. \"\"  is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

(a)

\

Explain why Rolles Theorem does not apply.

\

The function is \"\".

\

In this case \"\".

\

Substitute \"\" in \"\".

\

\"\".

\

Substitute \"\" in \"\".

\

\"\".

\

\"\".

\

The function \"\" does not holds the rolles theorem.\"\"

\

(b)

\

Conclusion of Rolles Theorem is true for \"\".

\

The function is \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

Conclusion of Rolles theorem:

\

There is a number \"\" in \"\" such that \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The value of \"\" lies on interval \"\".

\

The conclusion of Rolles Theorem is true for \"\".\"\"

\

(a) The function \"\" does not holds the rolles theorem.

\

(b) The conclusion of Rolles Theorem is true for \"\".