\"\"

\

A meteorologist measures the atmospheric pressure \"\" at altitude \"\".

\

(a) Plot the points \"\" and use the regression capabilities of the graphing utility to find a linear model for the revised data points.

\

Construct a table with \"\" and \"\" values to calculate \"\" values.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\

Graph:

\

Plot the ponts \"\".

\

Using regression capabilities graph thepoints.

\

\"\"

\

Observe the graph:

\

The linear model equation is \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

    h

\
\

    p

\
\

    ln(p)

\
\

      h*ln(p)

\
\

      \"\"

\
\

    0

\
\

 10332

\
\

    9.24

\
\

          0

\
\

      0

\
\

    5

\
\

  5583

\
\

    8.62

\
\

       43.1

\
\

     25

\
\

   10

\
\

  2376

\
\

    7.77

\
\

       77.7

\
\

    100

\
\

   15

\
\

  1240

\
\

    7.12

\
\

       106.8

\
\

    225

\
\

   20

\
\

    517

\
\

    6.25

\
\

        125

\
\

    400

\
\

\"\"

\
\

\
\

\"\"

\
\

\"\"

\
\

\"\"

\
\

The linear Regression is in the form of ln P = ah + b

\

where P is the Pressure and h is the altitude.

\

\"\"

\

To calculate the values of a and b

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Therefore the linear regression is ln P = -0.1496h + 9.296

\

\"\"

\

Graph

\

\"\"

\

\"\"

\

(b)

\

The linear model equation is \"\".

\

Apply Exponent on both side

\

\"\"

\

\"\"

\

The exponential model equation is \"\". \ \

\

\"\"

\

(c)

\

Graph the Original Data and the Exponential Regression

\

\"\"

\

\"\"

\

(d)

\

Pressure \"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\" \ \

\

If h = 5 then Rate of change of Pressure 

\

\"\"

\

\"\"

\

\"\"

\

If height h = 5 km then Rate of change of Pressure is -771.40.

\

If h = 18 then Pressure 

\

\"\"

\

\"\"

\

\"\"

\

If height h = 18 then Rate of change of Pressure is -110.39.

\

\"\"

\

Therefore,

\

(a) Linear Regression is ln(P) = -0.1496h + 9.296

\

(b) Exponential Regression is \"\"

\

(d) Rate of change of Pressure is -771.40 if h = 5 km.

\

Rate of change of Pressure is -110.39 if h = 18.