The differential equation is and initial condition is
.
The exact solution .
Find the exact value of at
.
.
Substitute in
.
.
.
.
.
.
.
Find the values when
at
.
The function is .
Passing through the point .
Using a step of .
Eulers method:
.
and
.
The function is .
Substitute and
in
.
.
.
.
.
Substitute ,
and
in
.
.
.
.
.
.
.
.
Find the values when
at
.
Substitute and
.
.
.
.
.
Substitute ,
and
in
.
.
.
.
.
.
.
.
.
.
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \