(a)
\The diffrential equation is .
.
Initial condition is .
The value of is
.
.
Euler Method : .
.
Substiute the values and
.
.
Substiute the values and
.
.
Substiute the values and
.
.
Substiute the values and
.
.
Substiute the values and
.
.
Substiute the values and
.
.
Substiute the values and
.
.
Substiute the values and
.
.
Substiute the values and
.
.
Substiute the values and
.
.
Substiute the values and
.
.
(b)
\The diffrential equation is .
Multiply each side by negative one.
\.
The general solution is .
Substiute the values in the general solution to find the value of
.
Passing throught the point .
Using a step of
Using and
.
Therefore, .
(c)
\Compare the solutions at value.
The solution at is
.
The solution at is
.
Error : .
(a)
\.
(b)
\The general solution is .
(c)
\Error : .