\"\"

\

(a)

\

The differential equation is \"\".

\

The initial condition is \"\" and \"\"-value is \"\".

\

Step size is \"\".

\

Euler method is a numerical approach to approximate the  particular solution of the differential equation.

\

Let \"\" that passes through the point \"\".

\

From this starting point, one can proceed in the direction indicated by the  slope.

\

Use a small step \"\", move along the tangent line.

\

\"\" and \"\".

\

\"\"

\

Use step size \"\", \"\", \"\" and \"\".

\

\"\".

\

Substitute \"\" and \"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\"

\

\"\"

\

Construct a table \"\" for \"\" values:

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"
\

The particular solution at \"\" is \"\".

\

\"\"

\

(b)

\

The differential equation is \"\".

\

The initial condition is \"\".

\

Solution to the differential equation :

\

\"\"

\

Integrate on each side.

\

\"\"

\

Substitute initial conditions \"\", \"\".

\

\"\"

\

The exact solution is \"\".

\

\"\"

\

(c)

\

The differential equation is \"\".

\

From Euler method the particular solution at \"\" is \"\".

\

The exact solution is \"\".

\

From the exact solution, the particular solution :

\

Substitute \"\" in exact solution.

\

\"\"

\

\"\"

\

\"\" has imaginary solutions.

\

Imaginary values are neglected.

\

\"\".

\

So the particular solution at \"\" is \"\".

\

Therefore the particular solution is almost same in both methods.

\

\"\"

\

(a) The particular solution at \"\" is \"\".

\

(b) The exact solution is \"\".

\

(c) \"\".