\"\"

\

(a)

\

The logistic model equation is \"\".

\

At time \"\", \"\" panthers in the preserves.

\

At time \"\", \"\" panthers in the preserve.

\

The florida preserve capacity is \"\".

\

Substitute \"\", \"\" and \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\" and \"\" in \"\".

\

\"\"

\

Substitute \"\" and \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\" in \"\".

\

\"\".

\

Therefore, the equation for the population of the panthers in the preserve is \"\".

\

\"\"

\

(b) Find the population after \"\" years.

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Therefore, the population of the preserve after \"\" years is \"\".

\

\"\"

\

(c) Find the time to population reach \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Therefore, the population reaches \"\" after \"\".

\

\"\"

\

(d)

\

The differential equation is in the form of logistic differential equation \"\".

\

Substitute \"\" and \"\" in \"\".

\

The differential equation is \"\".

\

The initial condition is \"\".

\

Step size is \"\".

\

Euler\"\"s Method :

\

Using \"\", \"\", \"\" and \"\". 

\

\

\"\". 

\

\

\"\". 

\

\

\"\".

\

\

\"\". 

\

\

\"\".

\

Therefore, the population after \"\" years is \"\".

\

\"\"

\

(e)

\

The population of the preserve is \"\".

\

\"\"

\

\"\" is increasing most rapidly where \"\", corresponds to \"\".

\

\"\"

\

(a) \"\".

\

(b) The population of the preserve after \"\" years is \"\".

\

(c) The population reaches \"\" panthers after \"\".

\

(d) \"\"; \"\".

\

(e)  \"\".