\"\"

\

The equations is \"\", \"\" , \"\" and \"\".

\

(a) Find the volume of the region about the \"\"-axis.

\

Disk method:

\

The volume of the solid is \"\".

\

Substitute \"\" , \"\" and \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

The equations is \"\", \"\" , \"\" and \"\".

\

(b) Find the volume of the region about the \"\"-axis.

\

Shell method:

\

Vertical axis of revolution.

\

The volume of the solid is \"\".

\

The distance from the center of the rectangle to the axis of revolution is \"\".

\

The height of the rectangle is \"\".

\

Substitute \"\", \"\" and \"\" and \"\" in \"\".

\

The graph is symmetrical about the \"\"-axis.

\

\"\"

\

\"\"

\

Apply integral substitution : \"\", where \"\".

\

Here \"\" then \"\".

\

 

\

\"\"

\

 

\

\"\"

\

 

\

\"\"

\

Apply the power rule of integral : \"\".

\

\"\"

\

Susbtitute \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

The equations are \"\", \"\" , \"\" and \"\".

\

(c) Find the volume of the region about the line \"\".

\

Shell method:

\

The volume of the solid is \"\".

\

The distance from the center of the rectangle to the axis of revolution is \"\".

\

The height of the rectangle is \"\".

\

Substitute \"\", and \"\" and \"\" in \"\".

\

The graph is symmetrical about the \"\"-axis.

\

\"\"

\

\"\"

\

Apply integral substitution : \"\", where \"\".

\

Here \"\" then \"\".

\

 

\

\"\"

\

 

\

\"\"

\

 

\

\"\"

\

 

\

\"\"

\

Apply the power rule of integral : \"\".

\

\"\"

\

 

\

\"\"

\

Susbtitute \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Because of the symmetry we can calculate the volume of the revolution around the y-axis of the area above the x-axis and multiply by \"\".

\

\"\".

\

\"\"

\

(a) The volume of the solid about  the \"\"-axis is \"\".

\

(b) The volume of the solid about \"\"-axis is \"\".

\

(c) The volume of the solid about \"\" is \"\".