\"\"

\

The equations of the graphs are \"\", \"\" and \"\".

\

Find the centroid of the region.

\

Moments and center of mass of a planar lamina:

\

Let \"\" and \"\" be continuous functions such that f\"\" on \"\", and consider the planar lamina of uniform density \"\" bounded by the graphs of \"\" and \"\".

\

The moments about the \"\"-and \"\"-axis are \"\".\"\".

\

The center of mass \"\" is \"\" and \"\" where \"\" is the mass of the lamina.

\

Find \"\".

\

Substitute \"\", \"\" and \"\" in \"\".

\

\"\"

\

\"\"

\

\"\".

\

Consider \"\".

\

Solve the integral using integration by parts.

\

Formula for integration by parts:\"\".

\

Here \"\" and \"\".

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\

Consider \"\".

\

Apply integral on each side.

\

\"\"

\

\"\".

\

Substitute corresponding values in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Find \"\".

\

Substitute \"\", \"\" and \"\" in \"\".

\

\"\"

\

\"\"

\

\"\".

\

Consider \"\".

\

Solve the integral using integration by parts.

\

Formula for integration by parts:\"\".

\

Here \"\" and \"\".

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\

Consider \"\".

\

Apply integral on each side.

\

\"\"

\

\"\".

\

Substitute corresponding values in \"\".\"\"

\

\"\"

\

Again apply integration by parts. 

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Find \"\".

\

Substitute \"\", \"\" and \"\" in \"\".

\

\"\"

\

\"\"

\

\"\".

\

Consider \"\".

\

Solve the integral using integration by parts.

\

Formula for integration by parts:\"\".

\

Here \"\" and \"\".

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\

Consider \"\".

\

Apply integral on each side.

\

\"\"

\

\"\".

\

Substitute corresponding values in \"\".\"\".

\

Again apply integration by parts.

\

Here \"\" and \"\".

\

\"\" and \"\".

\

\"\"

\

\"\"

\

Again apply integration by parts.

\

Consider \"\".

\

Here \"\" and \"\".

\

\"\" and \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\" in\"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

\"\"

\

Substitute \"\", \"\" and \"\" in \"\".

\

The centroid is \"\".

\

Observe the example 6:

\

The function \"\" is the inverse function of the \"\" and the region is same.

\

The centroid of example 6 is \"\".

\

Therefore, the centroid is also inverse.

\

\"\"

\

The centroid is \"\".