\"\"

\

The integral is \"\".

\

\"\" is discontinuous at \"\".

\

If \"\" is continuous on the interval \"\", except for some \"\" in \"\" at which \"\" has an infinite discontinuity, then \"\".

\

The improper integral on the left diverges if either of the improper integrals on the right diverges.

\

\"\".

\

\"\"

\

\"\"

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

Substitute \"\" and \"\".

\

\"\"

\

\"\"

\

Apply formula: \"\".

\

\"\"

\

Substitute \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

Therefore, the series is converges to \"\".\"\"

\

Grpah:

\

Graph the integrand as \"\".

\

\"\"

\

\"\"

\

The improper integral \"\" is converges to \"\".