\"\"

\

The function is \"\", on the interval \"\".

\

\"\"

\

It follows that \"\" and \"\".

\

By intermediate value theorem, we can conclude that there must be some c in \"\" such that \"\"

\

\"\"

\

Now we use bisection method for approximating the real zeros of a continuous function.

\

In this approximation if \"\" , then the zero must lie in the interval \"\"

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\" \"\" \"\"
\"\"\"\" \"\" \"\"
\"\"\"\" \"\" \"\"
\"\"  \"\" \"\"\"\"
\"\"\"\" \"\" \"\"
\"\"\"\" \"\"\"\"
\"\"\"\" \"\" \"\"
\"\"\"\" \"\"\"\"
\"\"\"\" \"\"\"\"
\"\"\"\"\"\" \"\"
 \"\"  \"\" \"\" 
\"\" \"\"\"\" 
\"\"\"\"0.672 
0.67510.6720.673 
    
    
\

The approximated value of zero is \"\"\"\".\"\"

\

Now we have to find out zero value using  graphical approach.

\

\"\"

\

From the above graph the zero value is nearly \"\" , it is located between \"\" and \"\".

\

\"\"

\

To find out the accurate value of value we further need to zoom the graphing utility as shown below.

\

\"\"

\

We clearly observe from the above graph the zero value is nearly \"\"

\

\"\"

\

The zero value approximated to two decimal points is \"\".

\

The zero value approximated to four decimal points is \"\".