\"\"

The function is \"r=\\frac{2x}{\\sqrt{625-x^2}}\"  feet/sec.

(a)

Find rate \"r\" when \"x\" is \"7\" feet .

\"\\\\\\lim_{x\\rightarrow

\"\\lim_{x\\rightarrow ft/sec.

 

\"\"

(b)

Find rate \"r\" when \"x\" is \"15\" feet .

\"\\\\\\lim_{x\\rightarrow

\"\\lim_{x\\rightarrow ft/sec.

 

\"\"

(c)

Find limit as \"x\\rightarrow.

\"\\lim_{x\\rightarrow.

As \"x\" tends to \"25\" from the left hand side, the limit approaches to \"\\infty\".

\"\\lim_{x\\rightarrow.

Verify the limit by the below table .

\"x\" \"24.5\" \"24.9\" \"24.99\" \"24.999\" \"24.9999\"
\"f(x)\" \"9.84\" \"22.29\" \"70.689\" \"223.60\" \"707.104\"

A limit in which \"f(x)\"  increases  without bound as \"x\" approaches \"25\" from the left  is called an infinite limit.

\"\\lim_{x\\rightarrow.

 

\"\"

(a) \"\\lim_{x\\rightarrow ft/sec.

(b) \"\\lim_{x\\rightarrow ft/sec.

(c)\"\\lim_{x\\rightarrow.