\"\"

The base of a right triangle is \"10\" mts.

The radius of a circle is \"10\" mts.

(a)

The area of triangle \"=\\frac{1}{2}bh\".

The area of sector \"=\\frac{1}{2}r^{2}\\theta\".

The area of shaded region = area of triangle - area of sector.

The area of shaded region \"f(\\theta.

In the triangle,

\"\\tan

\"h=10\\tan.

Substitute the values in the function.

\"\\\\f(\\theta

Domain of \"\\\\f(\\theta is \"\\left.

\"\"

(b)Graph the function \"\\\\f(\\theta.

\"\"

Observe the graph:

Complete the table.

\"\\theta\" \"0.3\" \"0.6\" \"0.9\" \"1.2\" \"1.5\"
\"f(\\theta \"0.4668\" \"4.2068\" \"18.0079\" \"68.6075\" \"630.0709\"

\"\"

(c) Find \"\\lim_{\\theta.

\"\\lim_{\\theta

As \"x\" tends to  \"\\frac{\\pi}{2}\" from left hand side, the function approaches to \"\\infty\".

\"\\lim_{\\theta.

\"\"

(a) Domain of \"\\\\f(\\theta , Domain: \"\\left.

(b)

\"\\theta\" \"0.3\" \"0.6\" \"0.9\" \"1.2\" \"1.5\"
\"f(\\theta \"0.4668\" \"4.2068\" \"18.0079\" \"68.6075\" \"630.0709\"

(c) \"\\lim_{\\theta.