\"\"

\

The function \"\\lim_{x\\rightarrow.

\

To show that for each \"\\epsilon,there exists a \"\\delta such that \"\\left, whenever  \"0<\\left.

\

Consider \"0<\\left

\

\"0<\\left.

\

Consider \"\\left.

\

\"\\left

\

Apply \"\\epsilon, theorem

\

\"f(x)=\\infty\", for \"M>0\" there exists a  \"\\deltasuch that  \"f(x)>M\" when ever \"c<x<c+\\delta\".

\

\"\\frac{1}{x-3}>\\epsilon\"

\

there exist \"M\" such that \"x-3<\\frac{1}{M}\".

\

hence  \"x-3<\\delta\".

\

Now we find relation between  \"\\epsilon\" and  \"\\delta\" such that \"\\delta.

\

\"x-3<\\frac{1}{M}\".

\

Therefore, \"\\lim_{x\\rightarrow.

\

\"\"

\

\"\\lim_{x\\rightarrow.