\"\"

\

The integral is \"\" and vertices of the triangle are \"\".

\

(a)

\

The integral is \"\".

\

Graph :

\

(1) Draw the coordinate plane.

\

(2) Plot the vertices \"\".

\

(3) Connect the plotted vertices to a smooth triangle.

\

\"\"

\

Use \"\".

\

\"\"

\

\"\"

\

Consider \"\".

\

Observe the graph, the curve \"\" is bounded from \"\".

\

Here \"\"coordinates are equal then the line is parallel to \"\"axis.

\

Since \"\", then \"\".

\

The limits of x are varying from 0 to 1.

\

\"\"

\

\"\".

\

\"\"

\

Consider \"\".

\

Observe the graph, the curve \"\" is bounded from \"\".

\

Here \"\"coordinates are equal then the line is parallel to \"\"axis.

\

Since \"\", then \"\".

\

The limits of y are varying from 0 to 2.

\

\"\"

\

\"\".

\

\"\"

\

Consider \"\".

\

Observe the graph, The curve is bonded from \"\".

\

Using two points form of a line equation is \"\".

\

Substitute \"\" in the line equation.

\

\"\"

\

\"\".

\

The limits of x is varying from 1 to 0.

\

Substitute \"\" in \"\".

\

\"\"

\

\"\".

\

From \"\".

\

\"\"

\

\"\".

\

\"\"

\

(b)

\

The integral is \"\" and vertices of the triangle are \"\".

\

Greens theorem :

\

If C be a positively oriented closed curve, and R be the region bounded by C, M and N are the partial derivatives on an open region then

\

\"\".

\

Graph :

\

(1) Draw the coordinate plane.

\

(2) Plot the vertices \"\".

\

(3) Connect the plotted vertices to a smooth triangle.

\

\"\"

\

\"\"

\

Observe the graph :

\

The limits of x are varying from 0 to 1 , so \"\".

\

Find the bounds for y :

\

Lower limit :

\

Consider the points \"\".

\

Here \"\"coordinates are equal then the equation of the line parallel to \"\"axis.

\

So the equation of the line is \"\".

\

Lower limit of y is \"\".

\

Upper limit :

\

Consider the points \"\".

\

Using two points form of a line equation is \"\".

\

Substitute \"\" in the line equation.

\

\"\"

\

Upper limit of y is \"\".

\

The limits of y is \"\" to \"\", so \"\".

\

\"\"

\

Using greens theorem,

\

\"\"

\

\"\"

\

\"\"

\

The region bounded by the triangle is \"\".

\

\"\"

\

\"\".

\

\"\"

\

\"\".