\"\"

Consider the semicircle sits on an isosceles triangle.

\"\"

\"A(\\theta)\" is the area of the semicircle.

\"B(\\theta)\" is the area of the triangle \"PQR\".

Consider the radius of the semicircle as \"r\".

In the right angle triangle, \"\\sin\\theta=\\frac{\\textrm{opposite.

From the figure,

\"\\sin\\frac{\\theta}{2}=\\frac{r}{10}\"

\"r=10\\sin\\frac{\\theta}{2}\".

Area of the semicircle is \"A=\\frac{1}{2}\\pi.

Substitute \"r=10\\sin\\frac{\\theta}{2}\" in the \"A=\\frac{1}{2}\\pi.

\"A(\\theta)=\\frac{1}{2}\\pi

\"\\\\=\\frac{1}{2}\\pi

\"\"

Area of the right angle triangle is \"A=\\frac{1}{2}\\times.

Here base of the right angle triangle is radius of the semi circle.

\"r=10\\sin\\frac{\\theta}{2}\"

Therefore \"\\mathrm{base}=10\\sin\\frac{\\theta}{2}\".

In the right angle triangle, \"\\cos\\theta=\\frac{\\textrm{adjacent.

From the figure,

\"\\\\\\cos\\frac{\\theta}{2}=\\frac{\\mathrm{height}}{10}\\\\.

Thus \"\\mathrm{base}=10\\sin\\frac{\\theta}{2}\" and \"\\\\{\\mathrm{height}=10\\cos.

Area of the triangle \"PQR\", \"B(\\theta)=2\\times.

Substitute corresponding values in the above expression.

\"\\\\B(\\theta)=2\\times

\"\"

Determination of   \"\\lim_{\\theta\\rightarrow :

 Substitute \"\\\\A(\\theta)=50\\pi\\sin^2\\frac{\\theta}{2}\" and \"\\\\B(\\theta)=100\\sin\\frac{\\theta}{2}\\cos\\frac{\\theta}{2}\" in the above expression.

\"\\\\\\lim_{\\theta\\rightarrow

\"\\\\\\lim_{\\theta\\rightarrow.

\"\"

\"\\\\\\lim_{\\theta\\rightarrow.