\"\"

The function is \"f(z)=\\frac{1}{z^2+1}\".

The function is in the form of composite function \"h\\.

Here \"g(z)=z^2\" and \"h(z)=\\frac{1}{(1+z)}\".

Consider \"g(z)=z^2\".

Differentiate on each side with respect to \"z\".

\"\\small

\"\\small.

Consider \"h(z)=\\frac{1}{(1+z)}\".

Differentiate on each side with respect to \"z\".

\"\\\\h\'(z)=(-1)(1+z)^{-2}\\\\

\"\"

\"f(z)=\\frac{1}{z^2+1}\".

Chain Rule of derivatives: \"\\frac{d}{dx}h(g(z))=.

Substitute \"\\\\h\'(z)=\\frac{-1}{(1+z)^{2}}\" and \"\\small in chain rule.

\"\\\\f\'(z)=\\frac{-1}{(1+z^2)^{2}}(2z)\\\\

\"\"

\"\\\\f\'(z)=\\frac{-2z}{(1+z^2)^{2}}.\"