\"\"

The function is \"f(t)=\\sqrt[3]{1+\\tan.

Consider \"h(t)=\\sqrt[3]{1+t}\" and \"g(t)=\\tan.

The function is in the form of composite function \"h\\.

Consider \"h(t)=\\sqrt[3]{1+t}\".

Differentiate on each side with respect to \"t\".

\"\\\\\\frac{d}{dt}h(t)=\\frac{d}{dt}(1+t)^{\\frac{1}{3}}\\\\h\'(t)=\\frac{1}{3}(1+t)^{\\frac{1}{3}-1}\\\\

Consider \"g(t)=\\tan.

Differentiate on each side with respect to \"t\".

\"\\frac{d}{dt}g(t)=\\frac{d}{dt}\\tan

\"g\'(t)=\\sec^2

\"\"

\"f(t)=\\sqrt[3]{1+\\tan

Chain Rule of derivatives: \"\\frac{d}{dt}h(g(t))=.

Substitute \"\\\\h\'(t)=\\frac{1}{3}(1+t)^{-\\frac{2}{3}}\" and \"g\'(t)=\\sec^2 in chain rule.

\"\\\\f\'(t)=\\frac{1}{3}(1+\\tan

\"\"

\"\\\\f\'(t)=\\frac{1}{3\\sqrt[3]{(1+\\tan.