\"\"

\

The equation is \"image\".

\

Consider the function \"image\".

\

Differentiate \"\" on each side with respect to \"\".

\

\"\"

\

Find the critical points.

\

Equate \"\".

\

\"\"

\

Critical point of \"image\" is \"\"

\

The function is a decreasing function, when \"\".

\

The function is an increasing function, when \"\".

\

\"\"

\

If \"\", then \"\" for all values of \"\", and hence it has no real roots.

\

If \"\", then \"image\" has a single real zero at \"\".

\

If \"\", then \"\" for all values of \"\", and hence it has no real roots.

\

Find \"\"-values to the left and right of \"\", where \"\".

\

\"\"

\

Use Intermediate Value Theorem to infer that \"image\" has two real roots.

\

Consider \"\".

\

\"\"

\

At \"\", \"\".

\

Consider \"\".

\

\"\"

\

At \"\", \"\".

\

Since \"\", apply the intermediate theorem to state that there must be some \"\" in \"\"such that \"\".

\

Observe the above cases find, that the function never have more than two real roots.

\

Thus, the function \"image\" has at most two real roots.

\

\"\"

\

The function \"image\" has at most two real roots.