\

(a)

\

Find two numbers whose sum is \"\" and whose product is a maximum

\

Construct a table of possible values :

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
First Number (\"\") Second Number (\"\") Product (\"\")
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\

Observe the table.

\

The numbers are \"\", \"\" then the product is maximum.

\

\

(b)

\

Consider first number be \"\".

\

Second number be \"\".

\

The sum of the two number is \"\":

\

\"\"

\

Let \"\" be the product of two numbers then \"\".

\

\"\"

\

Substitute value of \"\" in \"\".

\

\"\"

\

This product has the maximum value at a point where \"\".

\

Differentiate \"\" with respect to \"\" :

\

\"\"

\

Equate \"\" to zero:

\

\"\"

\

This is a maximum value, since \"\" and \"\"

\

Substitute the \"\" value in \"\":

\

\"\"

\

The product value is maximum when the two numbers are \"\", \"\".

\

\

(a) \"\", \"\".

\

(b) \"\", \"\".