\

Table of values of an increasing function  \"\" is given.

\

Determine the integral \"\".

\

Number of subintervals are \"\".

\

(a)

\

Determine the integral \"\" using right end approximation.

\

Here \"\" and \"\".

\

Width of the interval is  :\"\".

\

Right end points are \"\".

\

\"\"

\

\"\"

\

Substitute corresponding function values in above expression from the table.

\

\"\"

\

Integral value using right end approximation is \"\".

\

\

(b)

\

Determine the integral \"\" using left end approximation.

\

Width of the interval is:\"\".

\

Number of subintervals are \"\".

\

Left end points are \"\".

\

\"\".

\

\"\".

\

Substitute corresponding function values in above expression from the table.

\

\"\"

\

Integral value using left end approximation is \"\".

\

\

(c)

\

Determine the integral \"\" using mid point approximation.

\

Width of the interval is:\"\".

\

Number of subintervals are \"\".

\

Mid points are \"\".

\

\"\", where \"\".

\

\"\"

\

Substitute corresponding function values in above expression from the table.

\

\"\"

\

Integral value using mid point approximation is \"\".

\

If the function is increasing function, then the left end approximation indicates underestimate of actual integral value.

\

Right end approximation indicates over estimate of actual integral value.

\

Therefore, the left end approximation gives less than exact integral value and right end approximation gives greater than exact integral value.

\

\

(a)

\

Integral value using right end approximation is \"\".

\

(b)

\

Integral value using left end approximation is \"\".

\

(c)

\

Integral value using mid point approximation is \"\".

\

The left end approximation gives less than exact integral value and right end approximation gives greater than exact integral value.

\

\