\"\"

\

The region is  \"\" about \"\".

\

The region  \"\"  is the line \"\" that passes through the origin.

\

Equation of \"\"  with \"\"-unit length is \"\".

\

Find the equation of line \"\".

\

Point-slope form of line equation: \"\".

\

Substitute \"\" and \"\" in above formula.

\

\"\"

\

\"\".

\

The equation of line \"\" is \"\".

\

Use disk method to find the volume.

\

Method of disk:

\

The volume of the solid \"\" is \"\", where \"\" is the cross sectional area of the solid \"\".

\

\"\".

\

Here the the region \"\" is rotated about the line \"\".

\

Radius \"\".

\

From the graph, intersection points are  \"\" and \"\".

\

Integral limits are \"\" and \"\".

\

\"\".

\

\"\"

\

Volume of the region by rotatating about \"\" is,

\

\"\" 

\

\"\"

\

\"\".

\

Volume of the solid is \"\".

\

\"\"

\

Volume of the solid is \"\".