\"\"

\

(a)

\

The function is \"\".

\

\

A function \"\" is said to be one to one if any two elements in the domain are correspond to two different elements in the range.

\

\

If \"\" and \"\" are two different inputs of a function \"\", then \"\" is said to be one to one provided  \"\".

\

If \"\" then \"\"

\

\"\".

\

Since \"\", the function \"\"  is said to be one-to-one function.\"\" 

\

(b)The function is \"\".

\

Theorem 7:  If \"\" is a one to one differentiable function with inverse function \"\" and \"\" then the inverse function is differentiable at \"\" and \"\".

\

Find \"\".

\

Equate the function to \"\".

\

\"\"

\

Therefore \"\" then \"\".

\

\"\"

\

Differentiate the function with respect to \"\".

\

\"\"

\

Power rule of derivatives : \"\".

\

\"\". 

\

\"\"

\

\"\".\"\"

\

(c)The function is \"\".

\

Let \"\".

\

\

To find the inverse of \"image\", replace  \"\" with \"\" and \"\" with \"\".

\

\

\"\"

\ \

Solve for \"\".

\
\"\".

\

The inverse of the function \"\" is \"\".

\

Find the domain and range of \"\".

\

The domain of a function is all values of \"\", those make the function mathematically correct.

\

So, the domain of the inverse function is all real numbers.

\

Domain of \"\" is \"\".

\

Range set is the corresponding values of the function for different values of \"\".

\

The range of the function is also all real numbers.

\

Range of \"\" is  \"\".

\

\"\"

\

(d)

\

The inverse function is \"\".

\

Differentiate the function with respect to \"\".

\

\"\"

\

Apply power rule of derivatives : \"\".

\

\

\"\"

\

\

Find \"\" at \"\".

\

\

\"\"

\ \

\"\". 

\

\

\"\"

\

\

(e)

\

\

The graph of \"\" and \"\" is :

\

 \"\"

\

\"\"

\

(a) The function \"\"  is said to be one-to-one function.

\

\

(b) \"\".

\

(c)

\

\

The inverse function is \"\",

\

Domain of \"\" is \"\". 

\

Range of \"\" is  \"\".

\

\

(d) \"\".

\

(e)

\

The graph is : 

\

\"\".