\"\"

\

The function is \"\".

\

Differentiate with respect to \"\".

\

\"\"

\

Again differentiate with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

To find the intervals of increase and decrease, set \"image\".

\

\"\"

\

\"\" cannot be equated to zero.

\

\"\"

\

Therefore intervals are \"\" and \"\"

\

Consider a test point from the interval \"\".

\

Let \"image\" in \"\".

\

\"image\" then \"image\" is decreasing in the interval \"\".

\

Consider a test point from the interval \"\"

\

Let \"image\" in \"\".

\

\"image\" then \"image\" is increasing in the interval \"\".

\

Therefore,

\

\"image\" is decreasing in the interval \"\" and increasing in the interval \"\".

\

\"\"

\

To find the inflection points, set \"\".

\

\"\"

\

\"\" cannot be equated to zero.

\

\"\"

\

Substitute \"\" in \"\"

\

\"\"

\

\"\"

\

Inflection point is \"\".

\

\"\"

\

The test intervals are \"\" and \"\".

\

Interval     Test Value              Sign of f(x)              Conclusion

\

\"\"    \"image\"          \"\"      Concave upward

\

\"\"      \"image\"          \"\"      Concave downward

\

\"\"

\

(a) \"image\" is decreasing in the interval \"\" and increasing in the interval \"\".

\

(b) Inflection point is \"\".

\

(c) \"image\" is concave up in the interval \"\" and concave down in the interval \"\".