\"\"

\

(a).

\

Prove that \"\".

\

The definition of hyperbolic trigonometry: \"\" and \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

The exponential form of derivative: \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

\"\"

\

(b).

\

Prove that \"\".

\

The definition of hyperbolic trigonometry: \"\" and \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

The quitent rule of derivative : \"\".

\

\"\"

\

\"\"

\

 

\

\"\".

\

Since the hyperbolic identity :\"\".

\

\"\".

\

\"\".

\

\"\"

\

(c).

\

 Prove that \"\".

\

From reciprocal hyperbolic trigonometry : \"\"

\

\"\".

\

\"\".

\

The power rule of derivative : \"\".

\

\"\".

\

Since \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

(d).

\

Prove that \"\".

\

From reciprocal hyperbolic trigonometry : \"\"

\

\"\".

\

\"\".

\

The power rule of derivative : \"\".

\

\"\".

\

Since \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

(e).

\

Prove that \"\".

\

The definition of hyperbolic trigonometry: \"\"and \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

The quitent rule of derivative : \"\".

\

\"\"

\

\"\" 

\

\"\".

\

Since the hyperbolic identity :\"\".

\

\"\".

\

\"\".

\

\"\"

\

(a).\"\".

\

(b).\"\".

\

(c).\"\".

\

(d).\"\".

\

(e).\"\".