\"\"

The velocity of the rock is thrown upward on the planet is \"10\" m/s.

The function of the ball is \"y=10t-1.86t^2\".

(a)

Average velocity :

The average velocity is defined as the ratio of change in distance by change in time.

\"v_{avg}=\\frac{\\Delta, where \"\\Delta and \"\\Delta.

\"\"

(i)

Find the average velocity over the time interval \"[1,.

\"v_{avg}=\\frac{\\Delta

\"v_{avg}=\\frac{y(t_2)-y(t_1)}{t_2-t_1}\"

Substitute \"t_1=1\" and \"t_2=2\" in the above expression.

\"\\\\v_{avg}=\\frac{y(2)-y(1)}{2-1}\\\\\"

\"\\\\=\\frac{[10(2)-1.86(2)^2]-[10(1)-1.86(1)^2]}{2-1}\\\\

\"\\\\=4.42\"

The average velocity over the time interval \"[1, is \"4.42\" m/s.

\"\"

(ii)

Find the average velocity over the time interval \"[1,.

\"v_{avg}=\\frac{\\Delta

\"v_{avg}=\\frac{y(t_2)-y(t_1)}{t_2-t_1}\"

Substitute \"t_1=1\" and \"t_2=1.5\" in the above expression.

\"\\\\v_{avg}=\\frac{y(1.5)-y(1)}{1.5-1}\\\\\"

\"\\\\=\\frac{[10(1.5)-1.86(1.5)^2]-[10(1)-1.86(1)^2]}{1.5-1}\\\\

\"\\\\=5.35\"

The average velocity over the time interval \"[1, is \"5.35\" m/s.

\"\"

(iii)

Find the average velocity over the time interval \"[1,.

\"v_{avg}=\\frac{\\Delta

\"v_{avg}=\\frac{y(t_2)-y(t_1)}{t_2-t_1}\"

Substitute \"t_1=1\" and \"t_2=1.1\" in the above expression.

\"\\\\v_{avg}=\\frac{y(1.1)-y(1)}{1.1-1}\\\\\"

\"\\\\=\\frac{[10(1.1)-1.86(1.1)^2]-[10(1)-1.86(1)^2]}{1.1-1}\\\\

\"\\\\=6.094\"

The average velocity over the time interval \"[1, is \"6.094\" m/s.

\"\"

(iv)

Find the average velocity over the time interval \"[1,.

\"v_{avg}=\\frac{\\Delta

\"v_{avg}=\\frac{y(t_2)-y(t_1)}{t_2-t_1}\"

Substitute \"t_1=1\" and \"t_2=1.01\" in the above expression.

\"\\\\v_{avg}=\\frac{y(1.01)-y(1)}{1.01-1}\\\\\"

\"\\\\=\\frac{[10(1.01)-1.86(1.01)^2]-[10(1)-1.86(1)^2]}{1.01-1}\\\\

\"\\\\=6.2614\"

The average velocity over the time interval \"[1, is \"6.2614\" m/s.

\"\"

(v)

Find the average velocity over the time interval \"[1,.

\"v_{avg}=\\frac{\\Delta

\"v_{avg}=\\frac{y(t_2)-y(t_1)}{t_2-t_1}\"

Substitute \"t_1=1\" and \"t_2=1.001\" in the above expression.

\"\\\\v_{avg}=\\frac{y(1.001)-y(1)}{1.001-1}\\\\\"

\"\\\\=\\frac{[10(1.001)-1.86(1.001)^2]-[10(1)-1.86(1)^2]}{1.001-1}\\\\

\"\\\\=6.2784\"

The average velocity over the time interval \"[1, is \"6.2784\" m/s.

\"\"

(b)

Find the instantaneous velocity when \"t=1\".

Instantaneous velocity :

The instantaneous velocity is defined as \"v=\\lim_{\\Delta.

\"v=\\lim_{\\Delta

Substitute \"t=1\" in the above expression.

\"v=\\lim_{\\Delta

\"=\\lim_{\\Delta               ( Since \"y(t)=10t-1.86t^2\" )

 

\"=\\lim_{\\Delta

\"\\small

\"=\\lim_{\\Delta

\"=\\lim_{\\Delta

\"=\\lim_{\\Delta

\"\\\\={6.28+1.86(0)}\\\\

The instantaneous velocity when \"t=1\" is \"6.28\" m/s.

\"\"

(a) (i) The average velocity over the time interval \"[1, is \"4.42\" m/s.

     (ii) The average velocity over the time interval \"[1, is \"5.35\" m/s.

     (iii) The average velocity over the time interval \"[1, is \"6.094\" m/s.

     (iv) The average velocity over the time interval \"[1, is \"6.2614\" m/s.

     (v) The average velocity over the time interval \"[1, is \"6.2784\" m/s.

(b) The instantaneous velocity when \"t=1\" is \"6.28\" m/s.