\"\"

\

(a)

\

The integral function is \"\".

\

Evaluate the integral using integration by parts.

\

Integration by parts formula : \"\".

\

Assume \"\" and \"\".

\

Consider \"\".

\

Differentiate on each side.

\

\"\".

\

\"\".

\

Integrate on each side.

\

\"\"

\

\"\".

\

Substitute the corresponding values in the formula.

\

\"\".

\

\"\"

\

(b)

\

The integral function is \"\".

\

Assume \"\" and \"\".

\

Consider \"\".

\

Differentiate on each side.

\

\"\".

\

\"\".

\

Integrate on each side.

\

\"\"

\

\"\".

\

Substitute the corresponding values in the formula.

\

\"\"

\

If \"\" then \"\".

\

\"\"

\

Limits of the function \"\" and \"\".

\

\"\"

\

Since \"\" and \"\" are inverse function \"\".

\

\"\".

\

\"\"

\

(c)

\

The integral is \"\".

\

Geometric representation of the integral :

\

\"\"

\

In the above diagram :

\

Blue color region represents\"\".

\

Yellow color region repsents \"\".

\

Rose color and blue colors combined region represents the region \"\".

\

Rose color region represents \"\".

\

\"\"

\

(d)

\

The integral function is \"\".

\

The integral formula : \"\".

\

If \"\" then \"\".

\

If \"\" then \"\".

\

If \"\" then \"\".

\

\"\"

\

\"\".\"\"

\

(a) \"\".

\

(b) \"\".

\

(c) Geometric representation of the integral is 

\

\"\"

\

(d) \"\".