The integral is .
Let , then
.
Substitute corresponding values in the .
.
Consider .
Partial fractions decomposition of the integrand function :
\Compare coefficients on each side.
.
Compare constant terms on each side.
\.
Substitute in above equation.
.
If , then
.
Substitute the values of and
in equation (2).
Substitute above result in (1).
\Substitute in above equation.
.
.