\"\"

\

The integral is \"\".

\

Consider \"\".

\

In this case \"\".

\

Width \"\".

\

Substitute \"\" and \"\".

\

\"\".

\

\"\".

\

Calculate the \"\" at the interval boundaries.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

 Trapezoidal rule :

\

\"\".

\

 \"\"

\

Substitute \"\" to \"\" values.

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

\"\"

\

The integral is \"\".

\

Apply formula: \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The actual vaulue of integral is \"\".

\

\"\"

\

Graph the function \"\".

\

\"\".

\

Observe the graph:

\

The number of parts above the \"\"-axis and below the \"\"-axis are equal and cancelled.

\

Therefore, the actual value is \"\".

\

\"\"

\

\"\".

\

The actual vaulue of integral is \"\".

\

The number of parts above the \"\"-axis and below the \"\"-axis are equal and cancelled.