\"\"

\

The integral is \"\".

\

Rewrite the integral as \"\"

\

Consider the second integral on right side \"\".

\

Now apply comparison value theorem for above integral.

\

Consider the fact \"\" and it implies that  \"\".

\

\"\"

\

\"\"

\

Comparison theorem:

\

Suppose that \"\" and \"\" are continuous functions with \"\" for \"\",

\

1. If \"\" is convergent, then \"\" is convergent.

\

2.If \"\" is divergent, then \"\" is also divergent.

\

Here \"\" and \"\"

\

\"\"

\

Since \"\" is a finite value, it is convergent.

\

By comparison theorem, \"\" is convergent.

\

\"\" is convergent, it follows that \"\" is also convergent.

\

\"\" and \"\" are convergent, then\"image\" is convergent.

\

\"\"

\

\"\" is convergent.