\"\"

\

The integral is \"\".

\

Rewrite the integral as:

\

\"\".

\

Find the value of \"\" using Simpson\"\"s rule.

\

In this case \"\".

\

Width \"\".

\

Substitute \"\" and \"\".

\

\"\".

\

\"\".

\

Find the function values.

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\" and \"\" values in \"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Simpson\"\"s rule :

\

\"\".

\

\"\"

\

\"\" \"\"

\

\"\"

\

\"\".

\

\"\".

\

\"\"

\

Show that \"\":

\

Consider \"\" and \"\".

\

\"\" for all \"\".

\

The function \"\" is an increasing function.

\

Therefore, \"\" on \"\".

\

\"\"

\

\"\".

\

\"\"

\

Find the value of \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

\"\" is less than \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

\"\".