(a)

Find \"\\small.

Observe the graph.

Left hand limit \"\\lim_{x\\rightarrow1^-}f(x)\" :

As \"x\" approaches to \"1\" from left side, \"f(x)\" approaches to \"2\".

\"\\lim_{x\\rightarrow1^-}f(x)=2\".

Right hand limit \"\\lim_{x\\rightarrow1^+}f(x)\" :

As \"x\" approaches to \"1\" from right side, \"f(x)\" approaches to \"2\".

\"\\lim_{x\\rightarrow1^+}f(x)=2\".

Left hand limit and right hand limit are equal, \"\\small  is exist.

\"\\small.

(b)

Find \"\\lim_{x\\rightarrow3^-}f(x)\".

Observe the graph.

As \"x\" tends to \"3\" from left side, \"f(x)\" approaches to \"1\".

So \"\\lim_{x\\rightarrow3^-}f(x)=1\".

(c)

Find \"\\lim_{x\\rightarrow3^+}f(x)\".

Observe the graph.

As \"x\" tends to \"3\" from right side, \"f(x)\" approaches to \"4\".

So \"\\lim_{x\\rightarrow3^+}f(x)=4\".

(d)

Find \"\\small.

Observe the graph.

Left hand limit \"\\lim_{x\\rightarrow3^-}f(x)\" :

As \"x\" approaches to \"3\" from left side, \"f(x)\" approaches to \"1\".

\"\\lim_{x\\rightarrow3^-}f(x)=1\".

Right hand limit \"\\lim_{x\\rightarrow3^+}f(x)\" :

As \"x\" approaches to \"3\" from right side, \"f(x)\" approaches to \"4\".

\"\\lim_{x\\rightarrow3^+}f(x)=4\".

Here left hand limit and right hand limit are not equal.

\"\\small does not exist.

(e)

Find \"f(3)\".

Observe the graph that \"f(3)\" exists.

The solid dot indicates that value of the function exist at \"x=3\".

The value of the function at \"x=3\" is \"3\".

So \"f(3)=3\".

(a) \"\\small.

(b) \"\\lim_{x\\rightarrow3^-}f(x)=1\".

(c) \"\\lim_{x\\rightarrow3^+}f(x)=4\".

(d) \"\\small does not exist.

(e) \"f(3)=3\".