\"\"

(a)

Find \"\\lim_{x\\rightarrow-3^-}h(x)\".

Observe the graph.

As \"x\" tends to \"-3\" from left side, \"h(x)\" approaches to \"4\".

So \"\\lim_{x\\rightarrow-3^-}h(x)=4\".

\"\"

(b)

Find \"\\lim_{x\\rightarrow-3^+}h(x)\".

Observe the graph.

As \"x\" tends to \"-3\" from right side, \"h(x)\" approaches to \"4\".

\"\\lim_{x\\rightarrow-3^+}h(x)=4\".

\"\"

(c)

Find \"\\lim_{x\\rightarrow-3}h(x)\".

Observe the graph.

Left hand limit \"\\lim_{x\\rightarrow-3^-}h(x)\" :

As \"x\" tends to \"-3\" from left side, \"h(x)\" approaches to \"4\".

\"\\lim_{x\\rightarrow-3^-}h(x)=4\".

Right hand limit \"\\lim_{x\\rightarrow-3^+}h(x)\".

As \"x\" tends to \"-3\" from right side, \"h(x)\" approaches to \"4\".

\"\\lim_{x\\rightarrow-3^+}h(x)=4\".

Left hand limit and right hand limit are equal, \"\\lim_{x\\rightarrow-3}h(x)\" is exist.

\"\\lim_{x\\rightarrow-3}h(x)=4\".

\"\"

(d)

Find \"h(-3)\".

Observe the graph that \"h(-3)\" does not exists.

The hallow dot indicates that value of the function does not exist at \"\\small.

So \"h(-3)\" is undefined.

\"\"

(e)

Find \"\\lim_{x\\rightarrow0^-}h(x)\".

Observe the graph.

As \"x\" tends to \"0\" from left side, \"h(x)\" approaches to \"1\".

So \"\\lim_{x\\rightarrow0^-}h(x)=1\".

\"\"

(f)

Find \"\\lim_{x\\rightarrow0^+}h(x)\".

Observe the graph.

As \"x\" tends to \"0\" from right side, \"h(x)\" approaches to \"-1\".

So \"\\lim_{x\\rightarrow0^+}h(x)=-1\".

\"\"

(g)

Find \"\\lim_{x\\rightarrow0}h(x)\".

Observe the graph.

Left hand limit \"\\lim_{x\\rightarrow0^-}h(x)\".

As \"x\" tends to \"0\" from left side, \"h(x)\" approaches to \"1\".

\"\\lim_{x\\rightarrow0^-}h(x)=1\".

Right hand limit \"\\lim_{x\\rightarrow0^+}h(x)\".

As \"x\" tends to \"0\" from right side, \"h(x)\" approaches to \"-1\".

\"\\lim_{x\\rightarrow0^+}h(x)=-1\".

Left hand limit and right hand limit are not equal, \"\\lim_{x\\rightarrow0}h(x)\" does not exist.

\"\"

(h)

Find \"h(0)\".

Observe the graph that \"h(0)\" exists.

The solid dot indicates that value of the function exist at \"x=0\".

So \"h(0)=1\".

\"\"

(i)

Find \"\\lim_{x\\rightarrow2}h(x)\".

Observe the graph.

Left hand limit \"\\lim_{x\\rightarrow2^-}h(x)\" :

As \"x\" tends to \"2\" from left side, \"h(x)\" approaches to \"2\".

\"\\lim_{x\\rightarrow2^-}h(x)=2\".

Right hand limit \"\\lim_{x\\rightarrow2^+}h(x)\" :

As \"x\" tends to \"2\" from right side, \"h(x)\" approaches to \"2\".

\"\\lim_{x\\rightarrow2^+}h(x)=2\".

Left hand limit and right hand limit are equal, \"\\lim_{x\\rightarrow2}h(x)\" is exist.

\"\\lim_{x\\rightarrow2}h(x)=2\".

\"\"

(j)

Find \"h(2)\".

Observe the graph.

The hallow dot indicates that value of the function does not exist at \"x=2\".

So \"h(2)\" is undefined.

\"\"

(k)

Find \"\\lim_{x\\rightarrow5^+}h(x)\".

Observe the graph.

As \"x\" tends to \"5\" from right side, \"h(x)\" approaches to \"3\".

So \"\\lim_{x\\rightarrow5^+}h(x)=3\".

\"\"

(l)

Find \"\\lim_{x\\rightarrow5^-}h(x)\".

Observe the graph.

As \"x\" tends to \"5\" from left side, \"h(x)\" oscillates between \"2\" to \"4\".

So \"\\lim_{x\\rightarrow5^-}h(x)\" does not exist.

\"\"

(a) \"\\lim_{x\\rightarrow-3^-}h(x)=4\".

(b) \"\\lim_{x\\rightarrow-3^+}h(x)=4\".

(c) \"\\lim_{x\\rightarrow-3}h(x)=4\".

(d) \"h(-3)\" is undefined.

(e) \"\\lim_{x\\rightarrow0^-}h(x)=1\".

(f) \"\\lim_{x\\rightarrow0^+}h(x)=-1\".

(g) \"\\lim_{x\\rightarrow0}h(x)\" does not exist.

(h) \"h(0)=1\".

(i) \"\\lim_{x\\rightarrow2}h(x)=2\".

(j) \"h(2)\" is undefined.

(k) \"\\lim_{x\\rightarrow5^+}h(x)=3\".

(l) \"\\lim_{x\\rightarrow5^-}h(x)\" does not exist.