\"\"

The function is \"f(x)=\\frac{x^2+x}{\\sqrt{x^3+x^2}}\".

Graph :

Graph of the function \"f(x)=\\frac{x^2+x}{\\sqrt{x^3+x^2}}\" :

 

\"\"

\"\"

(a)

Find \"\\lim_{x\\rightarrow0^-}f(x)\".

Observe the above graph.

As \"x\" tends to \"0\" from left side, \"f(x)\" approaches to \"-1\".

So \"\\lim_{x\\rightarrow0^-}f(x)=-1\".

\"\"

(b)

Find \"\\small.

Observe the above graph.

As \"x\" tends to \"0\" from right side, \"f(x)\" approaches to \"1\".

So \"\\small.

\"\"

(c)

Find \"\\small.

Left hand limit \"\\lim_{x\\rightarrow0^-}f(x)=-1\".

Right hand limit \"\\small.

Left hand limit and right hand limit are not equal.

\"\\small does not exist.

\"\"

(a) \"\\lim_{x\\rightarrow0^-}f(x)=-1\".

(b) \"\\small.

(c) \"\\small does not exist.