\"\"

The function is \"\\lim_{x\\rightarrow2}\\frac{x^2-2x}{x^2-x-2}\".

Rewrite the function.

\"=\\lim_{x\\rightarrow2}\\frac{x(x-2)}{(x+1)(x-2)}\"

Cancel the common terms.

\"=\\lim_{x\\rightarrow2}\\frac{x}{(x+1)}\"

\"\\\\=\\frac{2}{(2+1)}\\\\

\"\\lim_{x\\rightarrow2}\\frac{x^2-2x}{x^2-x-2}=\\frac{2}{3}\".

\"\"

The function is \"f(x)=\\frac{x^2-2x}{x^2-x-2}\".

Construct the table for different value of \"x\", to estimate the value of \"f(x)\".

\"x\" \"f(x)\"
\"2.5\" \"0.714286\"
\"2.1\" \"0.677419\"
\"2.05\" \"0.672131\"
\"2.01\" \"0.667774\"
\"2.005\" \"0.667221\"
\"2.001\" \"0.666778\"
\"1.9\" \"0.655172\"
\"1.95\" \"0.661017\"
\"1.99\" \"0.665551\"
\"1.995\" \"0.606111\"
\"1.999\" \"0.666556\"

Observe the table.

The value of \"f(x)\" at \"x=1.999\" is \"0.666556\" and the value of \"f(x)\" at \"x=2.001\" is \"0.666778\".

Therefore the value of \"f(x)\" at \"x=2\" is \"0.666667\".

\"\"

\"\\lim_{x\\rightarrow2}\\frac{x^2-2x}{x^2-x-2}=\\frac{2}{3}\".