\"\"

\

(a)

\

The function is \"\".

\

Where \"\" is mass of the object , the velocity is  \"\" and position of the object is  \"\".

\

Find \"\" and \"\" at anytime \"\" and the total distance.

\

\"\"

\

Consider  \"\".

\

Since \"\".

\

\"\"

\

\"\"

\

\"\"

\

Integrate on both sides.

\

\"\"

\

\"\"

\

Take exponential on both sides.

\

\"\"

\

\"\"

\

\"\"

\

Where \"\" is the initial velocity of the function.

\

The velocity of the function is \"\".

\

\"\"

\

\"\".

\

Integrate both sides with respect to \"\"

\

\"\"

\

Since \"\".

\

\"\"

\

\"\"

\

\"\"

\

At the initial condition \"\".

\

\"\"

\

Since \"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

Therefore, \"\".

\

\"\"

\

The total distance is \"\".

\

Substitute \"\".

\

\"\"

\

\"\"

\

\"\".

\

Therefore ,the total distance is \"\".

\

\"\"

\

(b)

\

The function is \"\".

\

Where \"\" is mass of the object , the velocity is  \"\" and position of the object is  \"\".

\

Find \"\" and \"\" at anytime \"\" and the total distance.

\

\"\"

\

Consider  \"\".

\

Since \"\".

\

\"\"

\

\"\"

\

\"\"

\

Integrate on both sides.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

At the initial condition  \"\" and \"\".

\

\"\"

\

\"\"

\

\"\"

\

Therefore, the velocity is \"\".

\

\"\"

\

\"\".

\

Integrate both sides with respect to \"\"

\

\"\"

\

Since \"\".

\

\"\"

\

\"\"

\

At the initial condition \"\".

\

\"\"

\

Since \"\".

\

\"\"

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

Therefore, \"\".

\

\"\"

\

The total distance is \"\".

\

Substitute \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Therefore, the total distance is infinity.

\

\"\"

\

(a)  \"\", \"\". \ \

\

The total distnace is \"\".

\

(b) \"\" , \"\" .

\

The total distance is infinity.