\"\"

\

The equation is \"\".

\

(a) Find that the function is increasing when the condition is \"\".

\

Consider \"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Consider \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

If  \"\", then \"\" and \"\".

\

Hence, \"\".

\

The value of \"\" when \"\".

\

Therefore, the function is increasing when \"\".

\

Show that the function is decreasing when the condition is \"\".

\

If \"\" , then \"\" and \"\".

\

Hence the product is \"\".

\

Therefore, the function is decreasing when \"\".

\

\"\"

\

(b)

\

The function is \"\".

\

Substitute \"\" in \"\".

\

Graph the differential equation \"\". \ \

\

Graph :

\

\"\"

\

Observe the graph:

\

When, \"\" the vaue of \"\".

\

\"\" the value of \"\".

\

\"\" the value of \"\".

\

Find the equilibrium solutions of the funtion.

\

The equilibrium solutions occur when \"\".

\

Substitute \"\" and equate the function to zero.

\

\"\"

\

\"\"

\

\"\".

\

Equilibrium occurs when \"\".

\

\"\"

\

(c)

\

The function is \"\" \ \

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Apply integral on each side.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

At the initial condiition \"\" and \"\".

\

\"\"

\

\"\"

\

Substitute \"\"  in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Therefore , the solution is \"\".

\

\"\"

\

(d)

\

If \"\" ,show that atleast one value of \"\", the value of  \"\".

\

The function is \"\".

\

Equate the function \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

When  \"\" , the value of \"\" has atleast a single value for \"\".

\

\"\"

\

(a) The function is increasing when \"\" and the function is decreasing when \"\".

\

(b)

\

 \"\"

\

When \"\" the vaue of \"\".

\

\"\" the value of \"\".

\

\"\" the value of \"\".

\

The Equilibrium conditions are \"\".

\

(c) The solution is \"\".

\

(d) The value of \"\" have atleast a single value for \"\".