\"\"

\

The equation of the parabola is \"\".

\

\"\".

\

The general form of ellipse is \"\".

\

Comapre the equation with \"\".

\

Here \"\" and \"\".

\

The parametric representation of the general ellipse is \"\" and \"\" , \"\".

\

Susbtitute \"\" and \"\".

\

\"\" and \"\".

\

\"\"

\

Arc length :

\

The arc length of the curve for the parametric equations \"\" and \"\" in the interval \"\" is \"\".

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

Consider  \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

Susbtittute \"\" and \"\" and \"\" in \"\".

\

\"\"

\

\"\"

\

Substitute \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

 

\

\

The Simpsons Rule for approximating \"\" is \ \

\

\

 

\

\

\"\",

\

\

where \"\" and  \"\".

\

Fidn the \"\" for \"\".

\

Since integrating the half part of the integral, hence the value of \"\".

\

Substitute \"\" and \"\".

\

\"\"

\

Susbtitute \"\".

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\" in \"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

Substittue corresponding values in \"\".

\

\"\"

\

\"\"

\

\"\".

\

The length of the circumference of the ellipse is \"\".

\

\"\"

\

The length of the circumference of the ellipse is \"\".