\"\"

\

Integral test: \ \

\

The function \"\" is a continuous, positive, decreasing function on \"\" and let \"\". \ \

\

(i) If \"\" is convergent, then \"\" is convergent. \ \

\

(ii) If \"\" is divergent, then \"\" is divergent.\"\" \ \

\

The series is \"\".

\

The correspondimg integral in the terms of \"\" is \"\".

\

If \"\".

\

\"\"

\

\"\"

\

The integral is divergent if \"\".

\

If \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

If \"\".

\

\"\"

\

If \"\".

\

\"\"

\

Hence the integral is converges for \"\".

\

Threfore, the series is converges for \"\"

\

\"\"

\

The series \"\" is converges if \"\".