\"\"

\

The series is \"\".

\

Alternating Series Test:

\

If the alternating series \"\" satisfies

\

(i)  \"\".

\

(ii) \"\".

\

then the series is convergent.

\

\"\"

\

Verify condition (i) : 

\

Consider the related function \"\".

\

Differentiate the function with respect to x . 

\

\"\"

\

\"\"

\

\"\".

\

Since we are considering only positive \"\", consider \"\".

\

\"\"

\

\"\"

\

\"\".

\

For \"\", \"\".

\

Verify condition (ii):

\

\"\"

\

Apply L-hospital rule to find the limit.

\

L\"\"Hospital\"\"s Rule :

\

 If the value of limit is indeterminate form of type \"\" or \"\", then

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Series satisfies conditions of alternating series test.

\

Thus, the series is convergent.

\

\"\"

\

The series \"\" is convergent.