\"\" \ \

\

The series is \"\". \ \

\

Ratio test : \ \

\

Let \"\" be a series with non zero terms. \ \

\

1. \"\" converges absolutely if \"\". \ \

\

2. \"\" diverges if \"\" or \"\". \ \

\

3. The ratio test is inconclusive if \"\". \ \

\

Here \"\" and \"\". \ \

\

Find \"\". \ \

\

\"\" \ \

\

\"\" \ \

\

\"\" \ \

\

\"\" \ \

\

By the ratio test, the series \"\" is convergent when \"\". \ \

\

\"\" \ \

\

Radius of the convergence is half the width of the interval.

\

\"\" \ \

\

Radius of convergence is \"\". \ \

\

\"\" \ \

\

Check the interval of convergence at the end points. \ \

\

For \"\", \"\" \ \

\

\"\" \ \

\

The series \"\" is convergent by alternating series test. \ \

\

For \"\", \"\" \ \

\

\"\" \ \

\

\"\" is divergent series with \"\". \ \

\

Therefore, interval of convergence is \"\". \ \

\

\"\" \ \

\

Radius of convergence is \"\". \ \

\

Interval of convergence is \"\".