\"\"

\

The function is \"\".

\

Consider \"\".

\

Apply the power series formula: \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

Again apply derivative on each side.

\

\"\"

\

\"\"

\

Multiply \"\" on each side.

\

\"\"

\

\"\"

\

Substitute \"\".

\

\"\"

\

Since the first term(\"\") of \"\" is zero, \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The power series of \"\" is \"\".\"\"

\

Find the radius of convergence.

\

Consider \"\".

\

Ratio test :

\

Let \"\" be a series with non zero terms.

\

1. \"\" converges absolutely if \"\".

\

2. \"\" diverges if \"\" or \"\".

\

3. The ratio test is inconclusive if \"\".

\

Here \"\" and \"\".

\

Find \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The series is converges when \"\".

\

\"\".

\

Therefore, the radius of the convergence is \"\".

\

\"\"

\

The power series of \"\" is \"\".

\

The radius of the convergence is \"\".