\"\"

\

The function is \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

The power series form of \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

\"\".

\

Apply integral on each side.

\

\"\"

\

\"\".

\

Find the \"\".

\

\"\"

\

Substitute \"\" in eqatuion \"\".

\

\"\"

\

\"\".

\

Substitute \"\" in \"\".

\

\"\".

\

The power series of \"\" is \"\".

\

\"\"

\

Find the radius of convergence.

\

Consider \"\".

\

Ratio test :

\

Let \"\" be a series with non zero terms.

\

1. \"\" converges absolutely if \"\".

\

2. \"\" diverges if \"\" or \"\".

\

3. The ratio test is inconclusive if \"\".

\

Here \"\" and \"\".

\

Find \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The series is converges when \"\".

\

\"\"

\

\"\"

\

\"\".

\

Therefore, the radius of the convergence is \"\".

\

\"\"

\

Graph :

\

Graph the function \"\".

\

The power series of \"\" is \"\".

\

Graph the partial sums are \"\", \"\", \"\" and \"\".

\

\"\"

\

Observe the graph :

\

As the value of \"\" increases the approximation gets closer to \"\" over a wider interval.

\

\"\"

\

The power series of \"\" is \"\".

\

Graph of the function \"\".

\

Graph the partial sums are \"\", \"\", \"\" and \"\".

\

\"\"

\

As the value of \"\" increases the approximation gets closer to \"\" over a wider interval.