\"\"

\

The function is \"\".

\

Direct comparison test:

\

Let \"\" for all \"\".

\

1. If \"\" converges, then \"\" converges.

\

2. If \"\" diverges, then \"\" diverges.

\

Consider the series \"\".

\

\"\" is compared with \"\".

\

\"\".

\

Consider \"\".

\

The series is in the form of \"\"-series.

\

The \"\"-series \"\" is converges if and only if \"\".

\

Compare \"\" with \"\"-series.

\

Here \"\".

\

The series \"\" is converges.

\

Therefore, \"\" is converges.

\

\"\" converges for all values of \"\".

\

\"\"

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\

The summation form is \"\".

\

\"\".

\

When \"\", \"\".

\

\"\", when \"\".

\

Consider \"\".

\

The series is in the form of \"\"-series.

\

The \"\"-series \"\" is converges if and only if \"\".

\

Compare \"\" with \"\"-series.

\

Here \"\".

\

The series \"\" is diverges.

\

\"\" diverges when \"\"\"\" is an integer.

\

\"\"

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\".

\

The sine function is oscillates between \"\".

\

The series \"\" is converges only when \"\".

\

\"\" is zero when \"\" is multiples of \"\".

\

Therefore, \"\", \"\" is an integer.

\

\"\" converges when \"\".

\

\"\"

\

\"\" converges for all values of \"\".

\

\"\" diverges when \"\"\"\" is an integer.

\

\"\" converges when \"\".