\"\"

\

The function is \"\".

\

Definition of Taylor series:

\

If a function \"\" has derivatives of all orders at \"\" then the series

\

\"\" is called Taylor series for \"\" at \"\".

\

First find the successive derivatives of \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\" .

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

The nth derivative of the function \"\" is \"\".\"\"

\

The series is centered at \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Taylor series centered at \"\".

\

\"\".

\

\"\"

\

\"\"

\

\"\"

\

Radius of convergence :

\

By the Ratio Test, the series converges if \"\".

\

\"\" term of the taylor series is \"\".

\

\"\"term of the taylor series is \"\".

\

Condition for convergence : \"\".

\

So the region of convergence is \"\".

\

\"\"

\

Therefore the radius of convergence is \"\".

\

\"\"

\

Taylor series of \"\" is \"\".

\

The radius of convergence is \"\".