\"\"

\

The function is \"\" and \"\".

\

Definition of Taylor series:

\

If a function \"\" has derivatives of all orders at \"\" then the series\"\" is called Taylor series for \"\" at \"\".

\

First find the successive derivatives of \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Find the values of the above functions at \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\". \"\"

\

The series is centered at \"\".

\

Taylor series centered at \"\".

\

\"\".

\

\"\"

\

The \"\" derivative of the function \"\" is \"\".\"\"

\

Radius of convergence :

\

By the Ratio Test, the series converges if \"\".

\

\"\" term of the taylor series is \"\".

\

\"\" term of the taylor series is \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

If \"\" then \"\".

\

\"\"

\

\"\"

\

\"\"

\

Condition for convergence : \"\".

\

So the region of convergence is \"\".

\

\"\"

\

The radius of the convergence is half the width of the interval.

\

\"\".

\

Therefore the radius of convergence is \"\".

\

\"\"

\

Taylor series of \"\" is \"\".

\

The radius of convergence is \"\".