\"\"

\

The function is \"\".

\

Maclaurin series is \"\".

\

Find consecutive derivatives of the function to know the pattern of the n th derivative of the function.

\

\"\".

\

Differentiate with respect to \"\" on each side.

\

\"\"

\

\"\"

\

\"\"

\

Similarly, we can write \"\".

\

Find the values of the above functions at 0.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Substitute above values in the Maclaurin series formula.

\

\"\"

\

Maclaurin series of the function \"\" is \"\".

\

\"\"

\

Find the radius of convergence using ratio test.

\

The series is  \"\".

\

Consider \"\" and \"\".

\

\"\"

\

\"\"

\

Therefore irrespective of \"\" values series is convergent for all \"\".

\

Interval of convergence is \"\".

\

Hence the radius of convergence is \"\".

\

\"\"

\

Maclaurin series of the function \"\" is \"\".

\

Radius of convergence is \"\".

\