\"\"

\

The function is \"\".

\

(a)

\

Find the Taylor polynomial upto degree \"\".

\

Definition of Taylor series:

\

If a function \"\" has derivatives of all orders at \"\" then the series

\

\"\" is called Taylor series for \"\" at \"\".

\

First find the successive derivatives of \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

The series is centered at \"\".

\

Find the values of the function at \"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

Observe the values:

\

Taylor polynomials of odd degree will not exist for \"\" because \"\".

\

\"\"

\

Taylor polynomia is \"\"

\

Taylor polynomial of degree \"\" is \"\".

\

The series is centered at \"\".

\

\"\"

\

\"\".

\

Taylor polynomial of degree \"\" is \"\".

\

\"\"

\

\"\".

\

Taylor polynomial of degree \"\" is \"\".

\

\"\"

\

\"\".

\

Taylor polynomial of degree \"\" is \"\".

\

\"\"

\

\"\".

\

\"\"

\

Graph the polynomials \"\", \"\", \"\" and \"\" of function \"\".

\

\"\"

\

\"\"

\

(b) Evaluate \"\" and these polynomials at \"\" and \"\".

\

Construct the table for \"\", \"\", \"\", \"\" and \"\" at \"\" and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\" \

\"\"

\
\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\

\"\"

\

(c)

\

As \"\" increases, \"\" is a good approxmation to \"\" on a larger and larger interval.

\

\"\"

\

(a) \"\", \"\", \"\" and \"\".

\

Graph of the polynomials \"\", \"\", \"\" and \"\" of function \"\".

\

\"\"

\

(b)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\" \

\"\"

\
\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\

(c) As \"\" increases, \"\" is a good approxmation to \"\" on a larger and larger interval.